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ABSTRACT

The point single-step PS1 procedure established by Alefeld and Herzberger (1974)
has R-order of convergence greater than 2. This method is modified by using the idea
of Aitken (1950). The modified method PSS1 has a faster convergence rate. In this
paper, the convergence analysis of the point symmetric single-step PSS1 is shown.
The interval version of PSS1 (i.e. the interval symmetric single-step ISS1) is given
in Monsi and Wolfe (1988). Computational results indicate that this method is more
efficient than the total-step (Kerner (1966)) and the single-step (Alefeld and
Herzberger (1974)) methods.
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1. INTRODUCTION

Several point iterative procedures for the simultaneous estimation
of simple polynomial zeros exist. See for example, Aberth (1973), Alefeld
and Herzberger (1974), Braess and Hadeler (1973), Ehrlich (1967), Farmer
and Loizou (1975), Hansen et al.(1977), Henrici (1974), Kerner (1966),
Milovanovic and Petkovic (1983), Petkovic and Milovanovic (1983),
Petkovic and Stefanovic (1986, 1987) and references therein. The point
iterative procedures can be very effective but need some sufficient
conditions for local convergence. These conditions are usually difficult to
verify computationally because they often involve prior knowledge of the
zeros themselves. The effectiveness of an algorithm is analyzed by
measuring the R-order of convergence of the algorithm which is discussed
in detail in Ortega and Rheinboldt (1970).
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2. THE POINT TOTAL-STEP AND SINGLE-STEP
PROCEDURES

Let p:C! - C! be a polynomial of degree n defined by

p(x) = XiLo aix’ (1)
where a; € C* (i = 1,...,n) are given. This section contains several point
iterative procedures for estimating the n simple zeros x; (i = 1,...,n) of p
simultaneously.

The equation p(x) = 0 can be expressed in the form
p(x) =Ilj=1(x —x;) =0 2
if a, # 0. Therefore it is assumed henceforth that a,, = 1, so that

p(x) = [T (x — x;). 3)

Suppose that, for j = 1, ..., n, x; is an estimate of x;, and let q: C' - Clbe
defined by

q(x) = [Tj=1(x — xp). (4)

Then
q () =zl —x) (=1,..,n). 5

By 3),if, fori =1,..,n, x; #x; (j =1,..,n;j # i), then
* p(x;)
i =X [jiCi—x})" ©

Now x; = x]?“ (G =1,..,n) soby (6),

xfimx— =L (=1, 70) 7
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This gives rise to the point total-step procedure PT1 defined by

)
& _ ) p(x;) o (i=1..,n0k=0), (8)
X :
J

k
‘ L -

which has been studied by Kerner (1966) and to the point single-step
procedure PS1 defined by

LD 00 _ p(x{)

i— k k k k
l l H;:ll(x,_( )_x]( +1)) Hj:i+1(xi( )_x]( ))

€))

(i=1,..,n)(k=0),
which has been studied by Alefeld and Herzberger (1974).

The R-order of convergence of an iterative procedure is used in this
paper as a measure of the asymptotic convergence rate of the procedure.
The concept of R-order of convergence is discussed in detail in Ortega and
Rheinboldt (1970) and Alefeld and Herzberger (1983).

We now wish to repeat very useful theorem and definitions
(Orthega and Rheindboldt (1970)) for evaluation of R-order of convergence
of an iterative procedure /.

Theorem 1

Let 7 be an iterative procedure and let 2(I,x*) be the set of all sequences
{x(k)} generated by I which converge to the limit x*. Suppose that there
exists ap = 1 and a constant y such that for any {x(k)} e N, x"),

[l D) — P k>ky = ko ({x®}).

< y|x® — x*

Then it follows that R-order of I satisfies the inequality Oz(I,x*) = p.®m

Definition 1

If there exists a p = 1 such that for any null sequence {W(k)} generated
from {x(k)}, then the R-factor of such sequence is defined to be
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1
lim supllw®| 7, p =1

(
Ry (W(k)) = 4

[ Y
fim suplw @[5, p>1,

where R, is independent of the norm ||-||. m

Definition 2

We may now define the R-order of the procedure / in term of R-factor as

+oo if R,(I,x*) =0 forp>1

OR(IIX*) =
inf{p|p € [1,0),R,(I,x") = 1} otherwise.

Suppose that R, (W) < 1 then it follows from Ortega and Rheinboldt
(1970) that the R-order of I satisfies the inequality Ox(I,x*) = p. m

THE POINT SYMMETRIC SINGLE-STEP PSS1

In this section the symmetric single-step idea of Aitken (1950) is used to
derive a symmetric point single-step PSS1 procedure defined by

x*0 = x® (=1,..,n) (10a)
(k)
(k,1) (k) p(x; ") .
X =x ' —— i=1,..,n), 10b
i i H};ll(xi(k)—x](-k'l)) l'[}l:iﬂ(xi(k)—x](-k'o)) ( ) ( )
(k)
(k,2) (k) p(x; ) .
X =x ' —— i=n,..,1), 10c
i i H};ll(xl-(k)—x](-k'l)) l-[]_:Hl(xi(k)_x](_k.z)) ( ) ( )
x0HD =D (i =1,..,n), (k= 0). (10d)
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The procedure PSS1 has the following attractive features:
e The values p (xl.(k)) (i=1,..,n) which are computed for use in
(10b) are re-used in (10c).

e The products ;'-_:11(xl.(k) —x].(k'l)) (i=2,..,n) which are

computed for use in (10b) are re-used in (10c).

o x,gk'l) = x,gk'z) (k = 0) so that x,gk'z) need not be computed.

® The R-order of convergence of the point total-step PT1 procedure
defined by (8) is at least 2 or Oy (PT1)2=2. The point single-step
PS1 procedure (9) has been studied by Alefeld and Herzberger
(1974). The R-order of convergence of PS1 to the set of simple zeros
x*=(x},..,x)T is such that Ogx(PS1,x*)=>1+71>2,
where t € (1,2) is the unique positive zero of t"™ —t — /. As shown

subsequently that the corresponding R-order of convergence of
PSS1 defined by (10) is at least 3 or Ox(PSS1,x*) = 3.

Lemma 1

If (i) p: C - C is defined by (3); (i) p;:C — C is defined by
pi(x) =TI (e — ) [T i (x — ) (i=1,...,n) (11)
(iii) g; = C > C is defined by

g =152 — ) [T (x — %) (i =1,..,10), (12)

where X; # X,, and X; # X, m=1,..,n;j #m); (iv) ¢;:C—>Cis
defined by
- i(%j)qi(x) pi(%))qi(x)
() = () + izt PEGQ o PilEa) 13
o) = A+ B e PR ey ()

Then
p;(x)=pix) (vx €eC)(i=1,..,n).
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Proof
By (12), for j=1,...,i — 1,

i—-1 n
(;“_(’2,) = Jo- [ | @-2m.
J m=1 m=i+1
m#j
,i—1,

Soby (12), for j, k=1, ..

_ i-1 _ n _ ~
Qi(xk) _ <xk - xm) <xk - xm)
L\ % — & 1 I X — &
]

ql’(f])(fk - JZ']) m=1 J m=i+1
1 (G=k)
- 0 Gk

Qi(xk) _ | | <xk - xm) | | <xk - xm)
Xi—X Xj—Xm

(%)@ —%) AA\G—Tm/ L1
m#j
1 G=k
0 (#k
Furthermore, by (12),
(%) =0 (i+1<k<n),
and
qi(%) =0 1<k<i-1).
Therefore by (13),
(X)) =pi(x) (k=1,..,i—-1),
and
i) =pi(xx)  (k=i+1,..,n).
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Finally ¢;(x)/pi(x) - 1(x - )i =1,..,n), so ¢; interpolates p; at
the n—1 points Xq,..,X;_1,Xi41,--,Xn, and the point at infinity.
Therefore by the uniqueness of the Lagrange interpolating polynomial,
p;(x)=pix) (vxelC)(i=1,..,n).0

Lemma 2

If hypotheses (i) — (iv) of Lemma 1 are valid;
(v) X% (@{=1,..,n) are such that p(X)+0(@{=1,..,n),X #
Xmm=1,.,i—1),%#x,(m=i+1,..,n),and

_ p(¥%;) .
X: = X: — — = — = - (l = 11 ln)l (14)
' ' ;nil(xi - xm) H%:Hl(xi - xm)

=¢

(Vl) Wi =fi—xf,1717i =fi—x; ,and Wi =fi—x; (l = 1,...,Tl), then

i—-1 n
Wi = W; Vijwj + z viwie @=1,..,n) (15)
= j=it1
where
(X — x*
Vi = H’?*_”( J Vm) G=1,.,i-1) (16)
qi(xj)(xj - X;)
and
(X — x
P = H’?*A‘"( el Vm) G=i+1,..,n). 17)
qi(xj)(xj —X)
Proof

By (12), ¢;(%) # 0 (i = 1,...,n). So by (13), Lemma 1, (16), and (17)

i—-1 n
pi (%) pi(x;) pi (%))
PN Yy R
q:(%) Zqi(@)@—m 2 q; (%) (& — %)

j=1 j=i+1

i—-1
j=1 j
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Also, by (14)
_ { pi@éi)}
W; = W; 1-— — <0
q:(X;)
whence (15) follows from (18).0

Lemma 3

If hypotheses (i) — (v) of Lemma 2 are valid;

(vi) |% —x/|<0d/(2n—1) and %, —x]|<6d/2n-1) (i=1,..,n)
where d = min {|x;‘ - x}‘ li,j=1,..,n;i #j} and 0<6 <1, then
lw;| <8lw;| (i=1,..,n).

Proof
Now
|3?]- —Xm| = |xj — x| — |9?]- - X
>d———d
- (2n—-1)
2n—2
= ] =1,..
> (5o—5)d Gom=1,..,m),
whence
12 — 2| = |25 — 25| — |25, — %1l
- (Zn— 2>d 0 d
“\Z2n-1 (2n-1)
2n—3
> im=1,..,n).
- (2n—1>d Gm=1,.,n)
Therefore
il e
% = 2| % = 2|
0d/(2n—1)

=l en—3/@n-1

1

< 1+(2n—_3) (j,m

=1,..,n). (19)
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Also
1% — %i| 2 [ — x;| - I« — %l
><2n_3>d (ij=1,..n) 20
r— i,j=1,..,n). (20)

So by (17), for i = 1,

[m=2(%; — x51)

~ m#j .
hil = l—/~——— (G=2,..,n).
7 aG)E %

[Tm=2%;
m#j

REIIEEES]

n=z (1+ =)

m#+j

G=2,..,n)

< [ =2,...,n)
2n—3
(Zn - 1) d
1 n-2
(1w 2
T d@2n-3)/2n-1)"
It can easily be shown that
1 \"? 2n-
(1 + (27‘1——3)> < — (vn = 2). (22)
Thus by (21) and (22),
-1
| 1]|—d(n ) ( 2:--:”)
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So by (15), and hypothesis (vi)

-~ |

n
. 1 (@n-1)
|w1|s|w1|Z(n_1) — @

]:

|
.~ 1 (@n-1) eod
Slwll;(n—n d (2n-1)

Suppose that for some i > 2, |wy,| < 68|w,| (m=1,...,i —1). Then

>

- |% -

* *
X; — Xm

% — xn
>d o 4
=T n-1

2n —2
2( )d G=1,....i—-1,m=1,..,n).

2n—1
So
X — Xm| =[x — x| = 1%m — x5
2n—3
= d jym=1,..,i—1
_<2n_1> (]'m ) Il ),
whence
Iafj—af:;l < p 4 Pl
% = %m| % = %m|
1+ : Gom=1,..,i—1)
< Zn—3) jjm=1,..,1i .
Similarly,
Xi — X 1
|_] Am <l+— (=1,..,i—-L,m=1,..,n).
|x]- — xm| (2n—-3)
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Also
- |xf — X

% — % = |

>(2n_3>d G=1,.i-1i=1,..n)
= U j=1,..,i—1i=1,..,n).

So by (16) and (22),
[Ini j (X — x3)
q;(%) (% — %)

1 @n-1)
-1 d

75| =

G=1,.,i-1i=1..,n) (23)

Similarly, by (17) and (22),

19| = [T, (% —
ol aE)@E -
1 (2n-1) . .
ST-D P G=i+1,.,mi=1,..,n) (24)

So by (15), (23), (24), and hypothesis (vi),

i-1 n
_ - 1 (2n-1) _ R
e e e DY L W
j=1 j=i+1
i-1
< || 1 (2n-1) Z
=" m-1) d 1(2n—1) (Zn—l)
]:
= 0|,

So by finite induction on i, |w;| < @|w;| (i=1,...,n).0
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Theorem 2
If (i) p: C — C defined by (3) has n distinct zeros x; (i = 1, ...,n);
i) [x®-x D@i=1,.,n) where 0<6<1 and

, ..,n;i;tj}; (iii) the sequence {xi(k)} (i=
PHCNEN
i

1,..,n) are generated from PSS1 (i.e. from (10)), then
x; (k » ©)(i =1,..,n) and O (PSS1,x*) = 3.

Proof

For i=1,..,n, let

4100 = ]_[(x "‘“)]_[(x x5 (25)

m=i+1

42400 = ]_[(x x5) ]_[(x x5, (26)

m=i+1

pi (g, (x)
Gy, (D) (x — )

#1:() —q“(x)+2

n (k,0)
Pi(%; ") q1,:(x)
+ Z .(k’o)) , 27)

ot 4, ) (- &
and
pi () q,:(x)
0y (M) (e = %)

#24(2) —qzl(x)+2

n ] .(k,2) )
n Z p; (X] )qz,l (X) (28)

' (k,2) (k,2)N ’
j=i+1 QZ,i (X]. )(X - Xj )

where p;(x) is defined by (11).
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1( ¥ xl _x(kO)' Xi =

,9; = ¢@1,(i=1,...,n), it follows that for i =1, ...,n,k =0,

By lemma 1 and Lemma 2 with q; =qq; X; = x
(k 1

i-1 n
K1 k k1) (k1 k,0) (k0
WD = 1y ® Z“fj )W]_( ) 4 Z (} )W]_( e (29)
j=1 j=i+1
where
k, k, *
Wi( s) _ xi( s) —-x!, (s=0,1,2),
l'[ . .(x.(k'l) — X )
(k1) _ m#i,j Xm . P
) _ G=1.i-1), (30)
k1 k1 k
Y - x®)
and
l_[ . -(X-(k’O) — )
(k0) _ m#i,j Xm ..
e G=i+1,..,n). (31
k, k k
U G e - x)
Sumlarly, By Lemma 1 and Lemma 2, with q; = q3;;, %; —x(k), Xi =
i(kl) X -(kz)xpl @i (i=1,..,n), it follows that for =
nk =
i-1 n
Wi(k,z) =Wi(k) Zﬁ(“) (k1) Z B(kZ) k)l (32)
j=1 j=i+1
where
l_[ . -(X-(k’l) — x* )
(k1) _ m#i,j Xm ;o P
ﬁ = k1 k1 k G=1..i-1), (33
42, — %
and
i .(x.(k'z) — Xp)
pld = T m =i+1,..,n). €2

' k,2 k,2 k (]
05, () (P — x()
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It follows from (29)-(31) and Lemma 3 that |wl.(0'1)| <6 |wl.(°'°)| (i =
1,..,n), and it follows from (32)-(34) and Lemma 3 that |w*?|<

K |Wi(0'0)| (i=1,..,n), whence |Wl-(1'0)| < 6?2 |wl.(0'0)| (i=1,..,n)
follows from (10d). It than follows by induction on k that Vk > 0

k, ke_ , .
|Wl-( O)| <g3-1 |Wl.(O 0)| (i=1,..,n),
whence xl.(k) - x; (k> ®), (i=1,..,n). Let

sy _ @n—1)1 s
hks _T|Wi s

(i=1,..,n)(s=0,1.2). (35)

Then by (29) - (35), for i = 1,...,n,

-1 n
(k,1) p(e.0) pleD) (k,0)
h; <—- (n— 0 h; Z + Z hj , (36)
j=1 j=i+1
and fori = n, ...,1,
-1 n
(k,2) p060) pleD) (k,2)
h;”" < ——— (n— 0 h; Z + Z hj . 37)
j=1 j=i+1
Let
2 i=1..,n—-1)
"t = : (38)
3 (i=n)
4 (i=1
ut = { . (39)
3 (i=2..,n)
Forr = 1,2, let
3 +1 (i=1)
ui(k+1,r) _ ] (40)

3ul.(k’r) (i=2,..,n)
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Then by (38) - (40), for Vk > 0,

5 1
— (k_l) —_ = [ =
> (3tk-D) > (i=1
(k1) _
WS 2@kt ((=2,.m—1) (1)
3(3¢-D) (i=n)
9 1
St -5 (=1
ui(k,z) _) 2 2 (43)
3(3)*-D (i=2,..,n)
Suppose, without loss of generality, that
KW <h<1 (i=1,..,n). (44)

Then by a lengthy inductive argument, it follows from (36) — (44) that for
i=1..,nk>0,
(k,l) gk+1,1)
h;”" < h" ,

and
k+1,2
h&D < g,

whence, by (43) and (10d), (Vk = 0)
K <h® (i=1,..,n). (45)

By (35) fors = 2,

d
k2)| _ (k2) (: _
|Wl- | = mhi (i=1,..,n),
then by (10d),
d
(k+1)| _ (k+1) ;. _
|Wi | —mhi (l = 1,...,n).
So
d
(| _ () i
|Wl- | =@n=D h” (i=1,..,n)(k=0). (46)
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Let
w) = m_ax{|wi(k)|} 47
1<isn
and
h®) = max {h}. (48)
1<isn

Then, by (36)-(48)
d
wl < ——p3* (vi > 0).

So
Rs(w®) = lim sup {(W(k))1/3k}

1
< limy.. sup { (=) /3h}
—h
<1

Therefore (Orthega and Rheindboldt (1970)),

Or(PSS1,x;) =23 (i=1,..,n).m

4. CONCLUSION

The above analysis clearly shown that the PSS1 procedure gives
better result in term of the rate of convergence, where the R-order of
convergence of PSS1 is at least 3 or Oz (PSS1,x*) = 3. On the other hand,
the R-order of convergence of PS1 of Alefeld and Herzberger (1974) is
greater than 2, that is Ox(PS1,x*) =1+ 17 > 2, where T € (1,2) is the
unique positive zero of t" —t—1. And also that the R-order of

convergence of PT1 of Kerner (1966) is at least 2 or Og(PT1, x*) > 2.
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